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REPORT NO. 180.

DEFLECTION OF BEAIIIS WITH SPECIAL REFERENCE TO SHEAR
DEFORMATIONS.

By J. A. NEWLLV AND G. W. TR.iYER.

INTRODUCTION.

This pubIicatiou is one of fi serks of three reports prepared b! the Forest Products Lzdxnw-
tory of the Department of Agriculture for publication by the h’atlomd -4dvisory Committee for
Aeronautics. The purpose of these papers is to make known the results of tests to determine
the properties of wing beams of standard aml proposed sections, as conducted by the I?omsfi
Products Laboratory and tlnanced by- the Army and the h’avy.

Many of the mathematical operations empIo~ed in airplane design are nothing more than
the solution of equations which are either empirical or are based on assumptions which are
known to be inaccurate, but which hav-e been adopted because of their simplicity. These
inaccuracies of the formulas were noi of primary consideration as long as the stresses used for
design were obtained by the tesi of specimens of the same form as those to be used, and great
refinement was not necessary.

The advent of the airplane and the impetus given to its development by the recent -war has
created a demand for more definite knowledge of the limitations and proper application of the
common theory of ffem.re. There is probably no other field in which greater refinement in the
design of wooden members is required than in that of aircraft construction. The ever-present
problem of weight reduction has Ied to the use of comparatively smaU load factors and the
introduction of such shapes as are not cmurnouIy used for other construction purposes. Formulas
which give comparable results when appIied to wooden beams of rectangular section have been
found to be considerably in error when appIied to -wooden beams of other shapes.

The tests were made at Madison, Vi%., in cooperation with the University of Wisconsin.
.&n analysis of the re.dts of these tests has furnished inforrmtion which, when correlated with
that from other studies conducted by the Forest Service for the past 18 years} provided a more
exact method of computing the stiffness of wood bem.s and Ied to the development of formulas
for estimating the strength of beams of any cross section, using the properties of snd rec-
tangular beams as a guide.

For convenience, the report of this investigation has been divided into three parts. The
first part desds with the deflection of beams with special reference to shear deformation, which
usually has been neglected in computing defections of wood beams. The second part has to do
with stresses in beams subjected to transverse loading only, with a subdivision on nonsymmetriwd
sections; and the third partl mith stresses in beams subjected to both lorigihdh.d thrust and
bending stresses.

Smmf,uw.

In addition to the deflection due to tthe eIongat.ion and compression of fibers from bending
stresses, there is a further deflection due to the shear stresses and consequent strains in a bc+m.
This is not usually considered in computing deflections of -wood beams, though the modulus
of elasticity in shear for wood is relatively low, being bub approximately one-sixteenth the
modulus of elasticity in tension and compr-ion, whereas for steeI, for emmpIe, it is aboub
two-fifths the ordinary modulus.
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By neglecting the deformation due to shear, errors of considerable magnitude may be
introduced in determining the dMortion of a beam, especially if it is relatively shor~, or has
comparatively thin webs as the box or I beams commonIy used in airplane construction. A
great many tests were made to determine the amount of shear deformation for beams of various
seci;ons tested over many diflerent spans. As the span over which the bctim is tcst,cd is in-
creased the error introduced by neglecting shear deformations becomes less, and Llle vfdues
()btained b<ysubs~ituting measured deflections in the ordinary formulas approach ]norc nmrl.v
the modulus of ehts~ici~y in tension and compression. I?or shor~ spans, 11OWWW, tho error

is considerable, and inc.rcases rapidly m. the span is reduced. This vmintio]l is iIlustrohxl ill
Figures 3 and 4.

Two formulas were developed for estimating the magnitude of shear defommtions, both
of which have been verified by tds. It is known that the distribution of stress assumc(l in
both formulas does not exactly represent the actual distribution of stress in a beam. Both
formulas check experimental results very closely when the calculations are made with great
refinement. It is not known which is the more accurate. formula under these conditions, since
the difference in results obtained by the two is only a, snlaIl par~ of the normal vmidiort of
the material. The first formula., with its high powrs and nunmrous factors, will obviously
lead one into inaccuracies due to the ordinary approximations used in calmdations more readil.v
than will the second, or simpkr formula. In both formulas tho defom~ation CIUCto shear is

KPl -
equal to ~, where P is the load on a beam of length 1, F is the modulus of elwticity in shear,

and K is some coefficient depending upon the shape of the beam and upon the loading. The
formulas differ only in the determination of the cocfllcient K. Under Lhe heading ‘(Analysis
of R csul~,s’ } K by the first formula is shown and als~ by the second, or more simple fommla,

The modulus of elas~icity in shear was found to vwy greatly according to the direction
of the grain of the ply wood in webs of box beams. It was found to be over three WM1one-half
times as great for beams having ply-wood webs with the grain at 450 to the length as for beams
having -webs the face grain of which was perpendicular to the length of the beam.

Although the tests showed cone.]usively that shear stresses are present in the ovwhang,
the change in deformation on this account did not provo to be of sufllcim~ importance to hike
(overhang into account ev-en with the mos LheaviIy routod I sec~ions.

These tests show that the values of modulus 01 ehsticity for small beams given in Bulle-
tin 556’ are approximately 10 per cent lower than the true modulus of elasticity in tension find
compression. 13.oWever, -when substituted in the usual deflection formula ~hey wilI give correct
values for the deflection of solid beams with a span-depth ratio of 14, which is about the xvwage
found in most commercial uses. The bulletin values are therefore recommended for use in the
ordinary formulas when no corrections are to be made. For solid beams with spans from 12 ho
28 times the depth of beam the maximum error introduced by substituting these wdues in
the ordinary formuIas is about 5 per cent. For very short spans it would be well to use tho
more exact formulas, which take into account shear distortions, using for the true modullw a
value 10 per cent greater than that given in the bulletin.

But in 1 and box beams, however, which have a minimum of material ai the piano of
maximum horizontal shear stress, very considerable errors WM be introduced if shear dis-
tortions are neglected even for relatively large span-depth ratios.

PURPOSE.

The purpose of the tests was to determine to what extent ordinary deflection formulas,
which neglect shear deformations, are in error when applied to beams of various sccLions an(l
to develop reasonably accurate yet comparatively simple formulas which take into account
such deformations.

~Bulletin No, 556,United States Department of Agriculture, “Mechanical Properties of ‘iVoo?isGrown in the United States,” by J. A.
Ne’idin and T. R. O. Wilson.
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MATERML.

The beams were made of either Sitka spruce or Douglas fir wingg-bezm mat-eria.I conform-
ing to st,:lndard specificat.io~ and had either box, 1, double 1, or solid recta~wlar sections as

shown in Figure 1. The box and 1 beams, which were made of Sitka spruce, were either 14
or 18 feet in length. The double I beams had Sitka spruce flanges and ~, ~z ++ inch yellow
poplar ply-wood ~ebs with the grain of
face plies in some cases perpendicular
and in other cases at 45’ to the length
of the beam. The flanges were 3+
inches wide and 2 inches deep, the
depth over all was 88 inches, and the
length 14 feet 6 inches. Ml the beams
of solid rect.an=dar section were made
of Douglas fir. They were 2+ inches
wide, 5 iryhe.s deep, and 14 feet 6
inches lo~~.

It must noti be construed thai &he
beams were tested only in the lengths
gi~en abo~e. .ls tests for modulus of
elasticity were kept well within the
elastic limit, the lergth of the beams
coild be reduced after each test and
another test run over a new span=

Torsion specimens were 24 inches
long and 2+ inches of each end were
2 inches square. For 18 inches the sec-
tion vm.sreduced to a eircuIar section 1~
inches in diameter? the square erids and
circular center portion bebg connected
by a circuIar Net of +-inch radius.
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Fm. l.+ktions of beams used for mcdufus of elasticity kts=

OWUNE OF lWSIW.

A. B earn tests:
1. Test for modulus of elasticity—

(a) center Ioad@.
(3) Symmetrical 2--point loading.

2. Moisture determina~ions.
B. Tests of minor specimens matched with the beams:

1. Static bend@ tests of 30-inch specimens.
2. (compression-p araIleI-to-grain specimens 8 inches Iong.
3. ~ompression-perp endicdar-io-grati specimens 6 inches Io~o.
+. Sp-ecitlc gmtity determinations specimens 6 inches long.
5. Moisture determinations. Disks cut from all minor specimens.

(!. Torsion tests:
1. Test for modulus of rigidity.
2. Jloisture determination.

METHODS OF TESTS.

S1ODLUSE OF EL.kSTfCITY TESTS.

In order to eliminate the -rai.ddity of material in our Ccmp=kon of different spans, the
same beam was tested sever~ tkes, the Span hkm changed for each test. Since the relation
of moduIus of ek=titity in shefl to the orti~=y modtiw of el=ticity is not the same for different
beams and species, .<ewe.ral beams were tested that we might Ieam something of its ra~~e. In

~g~~~~
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some cases the ends were cut off to maintain a constant overhang and in other cases the lvM
length was kepfi constant as the span was changed. The accompanying tables show how spans
up to 18 were reduced by either 1 or 2 foot intervak to ei’ther 2 or 3 foot spans. Doff ect ions
were read by referring a scalej attached at the center of the beam, to a fine wire drawn between
nails over the supports, or when greater precision was required, by observing the movement of
a pointer on a dial attached to a light beam resting on nails driven in the test beam over tho
supports. A fine silk line attached to a nail at the center of the test beam passed around the
drum of the dial and carried a weight to keep it taut. Movements of the test beam were so
multiplied that the pointer gave deflections to 0.0001 inch, whereas by the first method dcflec-

FIG. 2.—Torsion apparatus,

tions could only be read to 0.01 inch. The two method[ were never interchanged during a series
of tests on any one beam.

Two of the types of beams tested showed a decided tendency to buckle during test. This
was overcome by using pin-connected horizontal ties, which prevented bending in more than onc
plane.

Loads were applied by a 30,000-pound capacity testing machine, which w-m fitted with aux-
iliary wings to accommodate spans up to 18 feet.

Center loading was used in all except two series of tests. The first of these series consisted
of tests of the same beam o-rer different spans, center and third point loading being applied
for each span, in order to determine the relation between the moduli of elasticit~’ as computwd
by the formulas for each condition. In the second series of tests the span was kept constant and
the distance between symmetrical loads changed in order to determine what effect, if any, the
distance between loads had on the modulus of elasticity as computed by the usual formula for
symmetrical loading.
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There -were matched with all I and box beams, static bending specimens approximately
2 by 2 inches in section and 30 inches long, compression parallel test pieces 2 by 2 inches by 8
inches 10WW,and compression perpendicular specimens 2 by 2 inches by 6 inches long. These
minors were tested and specific gravity and moisture determinations made in accordance with
standard laboratory methods.

A simple torsion apparatus -was set up in an ordinary wood lathe. Figge 2 is a photograph
of the machine. Load was appIied in 25 inch-pound increments and the angje of twist read for
each increment over a 16-inch gatge Iength. All torsion specimens -were matched with stand-
ard 2 b? 2 inch specimens which were tested in bendirg o-rer a 28-inch span. For further
descriphon of the test see Description of ~r~es ~d tables.

DESCRIPTION OF FIGURES AND TABLES.

Figure I.—This figure shows sections of alI beams used in modulus of elasticity tests
Such dimensions as “ 7 inches front” and “ 6+ inches rear” indicate that. two beams of that type
were tested, the words front and rear clesignatiog their position in the wing

Figure 2.—This is a photograph of a simpIe torsion apparatus set up in m ordinary wood
lathe. The right-hand wooden disk is set on bail beari.ngg and has a wire passirg around it to
a tray marked “ Ioad.” The smaller wooden disk at the left is fixed. The specimen is square at
the ends, which fit into the two ~ooden disks. The an@e of twist was measured by the two
troptometer arrm, each of which carries a str~~ which passes around the drum of a dial.

Fi.gwre 3.—This show-s the typical variation of the quantity SI with span for a beam of

soLid rectangular section Ioaded at the center.
Figure J.—This S.IIOJVSa similar wriation before and after routing a solid section. The

amount of shear def ormat ion is com~iderabIy increased by reducirg the thichmess at the plane
of maximum horizontal shear.

Figure 5.—This figure shows the same variation. The & ~alues, which are the a~er~e

from tests of three beams, are expressed as per cent of the true modulus of eki.sticity in tension
and compression.

Figure 6.-43.m-e A shows the d~tribution of shear stress in a beam of rectangular section,
and curve B the distribution in an I beam with square corners which was used as a basis for the
dedopments of the shear deformation formuks presented in this repor~.

Figure 7.—This &ure shows the superiority of 45° ply wood as regards rigidity. Shear dis-

tortion being Iess the vahms of &I are closer to the true modulus of ehisticity for the beam with

45° ply wood.

Figure 8.—In this duaI figure is represented the variation of ~~r with span for ~ariow

standard w@beam sections as weIl as for a sohd section. The beams were all made of

Sitka spruce and tested under center loading. The vaIue.s of
p~,

~1 are expressed as per cent

of the true moduIw of elast.icity in temsion and compression. The dimensions of these beams
are show-n in Eigure 1. In the upper row, from Ieft to ~~ht, is the %5--L, Loeningg, and TF,
and in the center of the lower row, the NO.

TaNe 1.—IR this table is given the measured and computed deflections of Douglas-fir
beams of solid rectangpdar section loaded at the center. The formula used t.akw into account
shear deformations usuaIly m@ected in such calculations. The d.itlerences in the two values
are expressed as errors in per cent of the measured deflection.

Table 11.—Here we have measured and computed deflections for standard sections. Nor
description of these sections see description of F~ge 8. The computed deflections are
from two formylas, one takirg shear into account and the other neglect.img it Errors are
expressed in per cent of the measured deflections.
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ANALYSIS OF RESULTS.

If a soIid beam k tested over different spans, load being applied at the center and measured

defections substituted in the expression ~~[ the resulting values for spans greater than 20 or

Z5 t~es the depth of bea,m will be f @y constant, approaching the true modulus Of ehtkity

in tension a~d compression, while for spans beIow this ratio there will be a rapid decrease.
Figure 3 sho~vs the results of just such a test. The beam was of Douglm fir, 2.75 inches wide,
4.97 inches deep, ‘and was tested over spans starting at 14 fee~ and reduced by 2-foot in~er~als
after each test to a span of 10 feet and then by l-foot intervals to a span of 2 feet. Evidently
the constant value which this curve would approach with longer spans is about 1,600,000 pounds
per square inch.

In this test a constant overhang of 3 inches was maintained for alI spans. For some of the
comparisons described below this was impossible since it was necessary to maintain a conshmt

DOUGLAS FIR BEAMS
SOLID RECTANGULAR AND I SEC770A6

DOUGLAS FIR BEAM
SOLD RECTANGULAR SECTION, 4.97”X 2.75”

Cen ier loading
1 I \ I !!1 1 1 [ 1 1 i 1

True co~pufedE= 6595,000 [b per S9 in.

Span dep fh rm%o

. ,.

.4Wm.

800

600

400

.nnc Uu
fesfeda?sume SPO’;S;

724 10 /2 /4 16
.&7 i% fee f

FIG. 3.—Relatfon of span to value obtained by substituting deflations in FIG. 4.—Relation of span to value obtained by substituting measurmi
p~a—.

@A [. ‘elections ‘n %1”

over-all length with a consequent variatiop in overhang as the span was changed. Observations
proved conclusively that shear strains crept out into the overhang, but the change in deflection
at the center due to this influence was too small to be measured.

Figure 4 shows the results of tests of a solid beam tested over various spans, aft a which it
was routed out to a~ I beam and again tested over the same spans. Both &pparently am
approaching the same asymptote, bufi for all spans within practical limits the I bwn is consider-
ably below the solid beam, showing that the shear deformations are greater for such a section
than for the solid one. When we measure the deflection of a beam in test we rneasum not only
the deflection due to the lengthening of the tension fibers and the shortening of the compression

fibers but the defection due to all other distortions. of the fibers. Ewe substitute this measured _
value in t formula which does not take hto account all such distortions we can not expect a
constant result for all spans and forms of beams but something like what is shown in Figures 3
and 4.
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WhiIe it is recognized that any distortion due to a force produc~~ bending mommt is
reflected in the deflection of a beam, the onIy distortions that appear to be of a magnitude to
justify coDsideratioR are those resllt.hg from the Ien@h~U of the te~slon fibers and shortening
of the compression fibers and from shear stresses.

The asymptote or constant value which these curves of F~gres 3 a~d 4 approach is the true
modulus of clastieit.Y h tension and compression, which we -will call .Q. If we assume that the

●

Curve A Curve B

ci!$i?
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+ :’,J
,=~,-~b*[=

%?
“=~ .,,@// %:$2’],~3:::’T~+,&\. ., h’

,-’< x, , ~,1.},,:,:,.1“m.:,,...,,“% “’: ~:-..s ,!$.f’
:: %! / :W j.-$-~<“:i
:.,., ,.,.,;,..”J..%if
_./’:.,, “““‘-”--”-”’’<>’““/-

Solfdrectffngu[ffr “I-Beam
beam wifh square corners

FIG.6.Distribution of shear stress in kams.

(7 2468 K7f2 f~—
Span in feet

048 & f6 20 24 28 32 36
Span fo depfh ratio

FIG. S.—Relation af span-depth ratio to wfue;~tained by snbsti-
tuthg measured defktions in ~~1.

deformation due to shear is proportional to the moment, a point which wilI he proved later,
we may write

Pll: ~ KPlll
“ ’48 ETI F

where,
A,= the deflection of a beam of span i!, loaded at the center with a load P,, and
F= the modulus of elasticity in shear.

For a span 1, with a load P, at the center of the same beam -we have

These two equations contain the two unknown quantities & and F, and hence the sohtion
of the two equations ivill fmmish values of the true rno.dulus 13Tand the sheari~r modulus F.
By making many experiments on the same beam instead of two and withg an equation for
each it is possible to obtain reliable values for these two moduli for that particular beam. From
the results shown in Figure 3 the true modulus of elasticity -was found in this way to be 1,595,000
pounds per square inch and from the results shown in Figge 4 it was found to be 2,154,000
pounds per square inch. Figure 5 shows results similar to those of Figgms 3 and 4. The-y are
expressed, however, in per cent of the true computed -% taken &s 100 per cent. In this case each
point represents the average of three beams rather than the results of a single beam.

Since for ordinary spans the deformation due to shear is small in comparison with the
deflection due to elongation arid compression of the fibers, it was difhdt to obtain reliable values

_-
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for F by the solution of simultaneous equations as outlined above, since the sIightest errors in
measuring deflections for ordinary spans were reflected in F more than in ET. Torsion tests
were made for the purpose of checking on this value, which showed F for spruce to be about
1/15 .& and for Douglas fir about 1/17 or 1/18 &.

Assuming a parabolic dis t,ribution of shear stress, as shown in Figure 6, expressions for
shear deformation can be-determined by setting up an expression for internal work and equating
it to the external work done in producing shear distortions.

In this way, for a beam of solid rectangular section loaded at the center, we get:

and for an I or box beam with square corners similarly loaded:

which may be written

f‘y
where,

where f=the cleformation due to shear.
F= modulus of elasticity in shear.
P =load at the center.
l=span.

.4= area of cross section.
1= moment of inertia of the section.

K,= distance neutral axis to extreme fiber.
K,= distance neutral axis to flange.
!,= width of flange.
tl= thickness of web; in box beams combined thickness of webs.

The developmerit of the above expressions is given in the appendix, together with ex~ircs-
sions for other conditions of loading.

The above formula assumes the parabolic distribution of shear stress on a cross section of a
beam, and the deflection due to shear is deterniued by the ordinary method of equating external
work to internal energy. It involves high powers and numerous factors which may lead to
inaccuracies when the ordinary approximations in calculations are employed. Consequently a
more simple formula was sought.

The development of the second, a more simple formula, follows. In fihe two forlnulas
the same shear distribution is assumed, but in the second formula the fundamental assumption
is that deflections due to shear in any two beams of the same length, height, and moment of
inertia, which are similarly loaded, are proportional to the summations of the shear stresses
on their respective vertical sections.

Let us assume that we have an 1 beam of a given length, depth, and moment. of inertiti, and
a rectangular beam of the same length, depth, and of a width to make its moment. of iner~ia
equal to that of the I beam. The shear stress distribution would bc as indicated in Figure 6,
Let us further assume that the shear deformations will be proportional to the areas under the

stress curve, Knowing the shear deflection of the rectangular beam to be
0.3P1
~ when supported

at the ends and loaded at the center, we can determine f for an I beam simil&ly loaded by
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multiplying this whe by the ratio of the area under the shear stress-curve of the 1 beam to the
area under the stress curve of the rectar@e, which ratio is:

Referrkg to cuwe B, Fiagrre 6

the total area ABODE= area ABIW+ area B i?.EG

The area under the stress curve of the reetangukr beam from the extreme fiber down to

the neutral axis, must necessarily be ~.

By our assumption the V’s and ~s VW cancel and the deflection of the 1 beam w-N be:

where,
.4, = area of rectangle. This value is readiIy expressed in dimensions of the I beam for, since

I of I beam= I of rectangIe = 2/3 b~’,

-which may be written

P1’ En
‘he ‘Ormula A= 4WZI+ F

can be applied to I and box sections of irregular shape by &s&

reducing the gi-ren section to one of equiwdent section, which is one Those height equaIs the
mean height of the beam and whose fla~~e areas equal those of the beam. By using K for the
equivalent beam only a slight error will be introduced in the results.
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TABLE 1.—LViowing dejtectwns determined by test compared with valuas computed by thcjormula

A=4&+o:;;

.
D()UGL.4S FIR BEAMS- SOMINAL 23BY 5 INCHES-CENTER LOAL)IXC.

Span.

COm- ‘restpu~d ~

— —

0.036
; p~

.190

.275

.450

.S20
.......
.625
.w)
1.m

,—

Error COm-
(per puted

cent). ‘A

+8. 9 0.0410
+6.9 .1072
–1.2 .2284
–0.6 .4228
+3.8 .3544
–1.5 .5525
+0.2 .S146
...............

+:.1 ::;
–o.1 1.18$

i
1

1

1Error i C6m-Test (pa pu~d

‘- I cat)”
—l— l—

6.0+05! +1.2 I0::::

:% \ W j:~
.425 i –O.5
.y4 I +0.1

:;$ I ::’ ;%
............. . .8439
1.254 0 1.15.3
1.343j O 1.411
L 4s6 I o I.563

Test
A

o.O.m
.0!/,8
.1M5
.2705
.37?8
Jfm
.369
.%4
L 161
I.417
L %x

Error
(per

cent).

+0.2
–o.3
–0.9
–1.9
–1.7
–l.s
–1.6
–1.2
–0.8
–o.4
–o.3

R L. R M.

.72=2227W. L’-1136WXI.

COm- r1Error COm-
plly ‘~t i (per

I cent). ‘“~d

—1— l-l—
0.0413
.1026
.1772
.226
.322
.4575
.5495
,W3S
.S176
1.m
1.577

+0.7
–1.1
+0.2
–1.1
–O.s
-Lo
+0.1
+1.1
+0.7
+0.8
+0.1

0.0275
.owl
.03s2
.1759
;3#

.549

.677

.s2’4
1.354
1..425

Twt Error
A (p

Cmlt).

—— --

0:030: I ~:;
,1023 –4:0
. ma –1.2
;p42 -L9

–1.4,m -0.7
.632 -0,s
.V27 -0.3
1.3a3 -0.1
1,$%3 -0.2

1 —.

N~m .—Each beam was tested over afJ the indicated spans. The error is expressed in per cent of the mca.sur&f def!eetIoil. In tho above
formula–

A=detlection in inches.
P=load in otmds applied at the ewter,

l“”I= momen of i nertm of the seet.ion.
L=span inincbes.

.4-area of the cross section in square inches.
Z=tme eo~p,lMmodulus of elasticit y.
F= the shearing rnoduIus of elasticity taken in the computation 8s one-fiftee]lth the average true modulus of elasticity. .

Let us now see how measured deflections compared with those computed by the formulas.
Table I shows the results of tests on five rectangular Douglas-fir beams approximately 2 ~ by 5
inches in section. True moduli of elasticity in bending were corn-puted w outlined in his
analysis and the a_verage found to be 1,918,000 pounds per square inch. The modu]us of elas-
ticity in shear T was taken as one-fifteenth of this value, or 127,’300 pounds per square inch.
The beams were supported near the ends and loaded at the center. Wmputed deflections wero

obtained by substituting in the formula. .

P& 0.3Pl
‘=48EIT .4P

where .*1= area of the cross section.

The errors me expressed in percentage of the mensured deflections. ‘l’he fivcrwgc F’ was
used for all beams, but in using E its value for each particular beam was substituted. .4n
examination of the table shows that test and computed values agree remarkably well.

In Table II are given measured deflections for the I and }WX beams, sections of w-hich tire
shown in Figure 1.

Deflections were computed by the usual formula

P1’
‘=48EI

and by [he more exact formula
p~3 =1

‘=48EI+T
where,

The true modulus of elasticity in tension and compression was used in both formulns. Tlm

shearing modulus F w-as taken as 99jOO0 pounds per square inch: or about onc-eighteenth the
average true modulus of elasticity. Errors by the two formuhs are expressed in per cent. of
the measured deflections. An examination of the table will show at a glance how much mor~
closely the deflections can be estimated by the exact formula. For example, estimated values
for a 3-foot span by the exact formula check test results within O to 12, I per cent, whereas
values by the ordinary formula are in error from 34.6 to 65.7 per cent.
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.

The great difference in the shearing modulus of elasticity of ply-wood webs with the grain

at 45° to the length of a beam and -with the grain of face plies perpendicular to the length of
the beam is well illustrated in Figure 7. The section of the beam is that of the double I shown
in Figure 1. A pair of b ewns were matched throughout, the only clifference in the two being
in the direction of the grain of the ply-wood webs. Both were tested over spans from 2 to 14

[
SPRUCE BEAMS

DOU5LE I SECTION WITH POPLAR WEB.5

pit.Me.7.—R&tionof span to vaIue obtained by substituting deflections in .f8~1.

feet, and the points indicate the resuIts of these tests. The full lines were obtained by sub-
stituting in the formula

p13 ~1
—.

‘=48 EI+T”

I?or the beam having ply-wood webs with the grain at 45° to the length of the botirn,
353,000 pounds per square inch was used for F, and for the beam in which the face grain of the
ply wood was perpendicular to the length of the beam, 99,000 pounds per square inch was
used, the shearing modulus in the former case being over three and orie-half times that required
in the latter ease.

With the aid of the complete deflection formula we can determine the error for any span
introduced by neglecting shear deformations.

‘Z’ the ordinary formula for center loading,NOIV,in substituting measured deflections in _
48AI’

we get:

since, as shown above:
p13 ~~

‘=48 EJ+~”
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This -due E= has been plotted for various spans in Figge s for a rectanggar beam and

for a few standard I and box sections ~, was taken as 100 per cent and F as ~.

E..= true moduhs of elasticity.

Ea =4& where A= measured deflection.

F = modulus of elasticity in shear.

K = a constant for the section. Taking F for spruce=&.

For extremely short spans in -which the shear deformat ion might be as much as one-half the
total deformation we migght anticipate that deflections of beams Ioaded at the third point would
give considerably different values for E. when substituted in the usual formuk than -would
deflections for beams loaded at the center. The shear deformation in both cases is proport iond

I

SITKA SPRUCE BEAMS
SOLID AND sL4NDARD WING BEAM SECTKVVS

Cen fer .foadna

o 8 [6 2+ .32 40
Span fo dkpfh rafio

PP
Fm. &-ReIath ofspandepth ratio to mfue obtained by substituttig mea.mred dWectfom m ~1-

to the stress. but for equal stresses the deflection of a beam Ioaded at the third points is greater

1)3. g - Assuming the deformation due to shear in the case of the beam loaded at the center

[1.50 of the tatal deflection, EC would be 50 per cent in error. Then for the third-p~int ~oading

the shear deformation is numerically the same because of equal stress, but the deflection due
.>.

to change in the length of the fibers is ‘# as much as in the former case and our err&r is now

apprwcimateIy 44 per cent., or a difference of only 6 per cent, and this only in an extreme case.
For all practical purposes we couId neglect this difference and assume our error equal in the
two cases.

An examination of Fiogmes 3, 4, and 8 would indicate that the moduli of elasticity gi-ren
in our Bulletin 556 for small cIear specimens tested o~er a span 14 times the depth of specimen
are about 10 per cent below the true modulus of eksticit y in tension and compression. This is
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true; it is a value obtained by substituting measured defections in the usual deflection formula
neg~ecting shear deformation. However, if this value is in turn used_to estimate the deflection
of a solid rectangular beam by substituting in the usual formula we arrive at the correct. dcflec- i
tion provided our span is 14 times the depth. I?OFordinary spans, say from 12 to 28 times
the depth, ihe error -wouldbe within b per cent. For rectangular beams used in ordinary lengths
then we would not -vitiate our results to any great extent by using these values of modulus of
elasticity in the usual formula..

In the design of box and I sections with relatively little material at the plane of maximum
horizontal shear, however, very considerable errors will occur even for large span-depth ratics
unless the more accurate method of determining the elastic properties of a beam is emr Ioyed.
For some sections tested the error introduced at a span of 14 times the depth was over 35 per
cent as against 10 per cent for a solid rectangular beam.

CONCJ..JJSIONS.

Because of the magnihde of shear distortions it is often necessary to ctdculate the elastic
properties of wood beams by formulas which take into account such distortions. ‘1’his is
especially true for box and I beams which have the material distributed in a way to take care
of maximum tensile and compressive stresses, which means a minimum of material at the plane
of maximum longitudinal shear. The shear deformation is proportional to the moment tu

—’ where P is the load on a bean] ofwhich the beam is subjected and may be expressed .by ‘Fp~

span 1, F is the modulus of elasticity in shear, and R a coefficient depending upon the shape of
the cross section and upon the loading. Two formulas for the determination of -K havo bwn
developed. The first is a rather long for.mda developed by ordinary methods, the second a
simpler formula and more empirical in its nature. Both check experimental results very closely,
but the second formula is recommended because its use involves less labor and offers less oppor-
tunity for error.

Usually shear deflections are neglected, and deflection determined bty test when subskitutwl
in the usual deflection formuIas will give a modulus of elasticity less than the tension and com-
pression modulus, the error increasing as the span is reduced. The elastic properties given in
such tables as are included in Bulletin 556 were determined in this way. Theso st.andar~l
bending specimens have a span depth ratio of 14, for which ratio the modulus of elasticity
is about 10 per cent below the true moduIus in tension and compression.

However, if these values are used in design they will give correct deflections for solid rec-
tangular beams of the same span-depth ratio if substituted in the usual formulas with which
they were determ~med. Furthermore, for ordinary spans, say from 12 to 28 times the depth of
beam, they will give values correct within 5 percent. For shorter spans it would be preferable to
use the more exact formuks which take into account shear deformations. There is very little
difference in the errors for center and third-point loading. For beams of I and box section shmr
distortions are far more pronounced and errors of. considerable magnitude will be inbroduccd
even for large span-depth ratios unless the exact formulas are employed.

Box beams with ply-wood webs have a greater modulus of rigidity with the grain of the
plywoocl at 45” to the length of the beam than with the grain of the face plies perpendicular to
the length. Tests showed
times tb e latter fiype.

the former type to have &modulus of rigidity over three and ono-half
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APPENDIX.

The development of the formdas for shear deformations.

BEAMS OF SOLID RECTANGULAR SECTION.

Let us assume first % recta~gular beam supported near the ends -and with a concentrated
lo~d at the center.
Let

g= unit shearing stress.
V= totit vertical shear.
I= momenh of inertia of section.
6 = thickna of section.
d= depth of section.
y= distance from neuhd axis.
F= modulus of eksticity in shear.
f= deflection due to shear.

We ha-re,

J~=g@@,
a well-known formula, which gives a distribution as shown in Fi.we 6, c~~e ~. This giv=

NOX, the unih shearing stress q produces a deformation $ in planes at unit distance apart.

The work in shear per unit of voIume, therefore, is

gxY=L
2F2F

@ _ V’ @’- 8@’+ 16y’) .
2-T’– 128FI’

Multiplyiwg by the e~ement of volume 6 dy dr and first integrating with respect to y with
limits – d/2 and+ d/2

J
p~@

s
3 p“2&

—x%x= ~~.Internal ‘ork = 128FI’ 15

IrI the case assumed T’ is a constant and the expression becomes

3 V’1
Internal work = ~ ~F

.Now, for a beam supported near the ends and 10aded at the center V= P/2 and the external

\vork is !f.
.2

We may write &herefore:

;f . b=&dF
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If A = the total deflection we then have for a solid rectangular beam lo&ded at the center

pls (33pl
—z

‘=48EI+ AF ‘here A ‘fid’

In the case of a cantilever beam we would have Y= P and

for a solid rectangular beam. For beam supported at the ends and loaded equally at the

third poi~ts

-f- yy

where,
P’ =load at each third point,

or

f=g”
where,

P = total Ioad.

Similarly; we may show that for a uniformly distributed load P

f’Q&-

So far these expressions for shear deformations apply only to beams of rectangular section.

I OR BOX BEAMS.

Let us now examine an I beam m, what is practically the same, a box beam. The follow-
ing notations will be used in addition to those already given:

K2 = distance neutral axis to extreme fiber.

K1= dist ante neutral axis to inner edge of flange.
tz=width of flange.
tl = thickness of -web; in box beams combined thickness of webs.

In the flange:

J
v -&Y =~ (Kj–y’).~=~

In the web:

The distribution of shearing stress will be as shown in Figure 6, curve B.
The internal work per unit volume is

where,
da= kly.
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Assuming a beam ;f length 1, lozided at the center with a load P, the external -work
=Pj2 and since the externt-d work eqmds the internal work:

JF“/2=.2.~&~E’@dy
or

Integrating with respect toy and substituting the limits and $ for

Note that for the limiting condition when K,= & and t,= k we get .f = ~’ whichhas

Jread.r been determined for a rectangular beam Ioaded at the middle.


